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Abstract
The Boltzmann equation for d-dimensional inelastic Maxwell models is
considered to analyse transport properties in spatially inhomogeneous states
close to the simple shear flow. A normal solution is obtained via a Chapman–
Enskog-like expansion around a local shear flow distribution f (0) that retains
all the hydrodynamic orders in the shear rate. The constitutive equations for
the heat and momentum fluxes are obtained to first order in the deviations
of the hydrodynamic field gradients from their values in the reference state and
the corresponding generalized transport coefficients are exactly determined in
terms of the coefficient of restitution α and the shear rate a. Since f (0) applies
for arbitrary values of the shear rate and is not restricted to weak dissipation,
the transport coefficients turn out to be nonlinear functions of both parameters
a and α. A comparison with previous results obtained for inelastic hard spheres
from a kinetic model of the Boltzmann equation is also carried out.

PACS numbers: 05.20.Dd, 45.70.−n, 51.10.+y

1. Introduction

Granular gases are usually modelled as a gas of hard spheres dissipating part of their kinetic
energy during collisions. In the simplest model, the grains are taken to be smooth so that
the inelasticity of collisions is characterized only through a constant coefficient of normal
restitution α � 1. For a low-density gas, the Boltzmann kinetic equation has been conveniently
modified to account for inelastic binary collisions [1, 2] and the Navier–Stokes transport
coefficients [3] for states with small hydrodynamic gradients have been computed by means
of the Chapman–Enskog method [4] around the local version of the homogeneous cooling
state. As in the case of elastic collisions, the transport coefficients are given in terms of
the solutions of exact linear integral equations which are approximately solved by considering
the leading terms in a Sonine polynomial expansion of the velocity distribution function. On
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the other hand, in spite of this approach, the Sonine predictions compare in general quite well
with computer simulations, even for quite strong dissipation conditions [5].

Needless to say, the mathematical difficulties of solving the Boltzmann equation for
inelastic hard spheres (IHS) increase considerably when one considers situations for which
large gradients occur and more complex constitutive equations than the Navier–Stokes ones
(which are linear in the spatial gradients) are required. For this kind of situations one has to
resort to alternative approaches, such as the use of simplified kinetic models, where the true
Boltzmann collision operator is replaced by a simpler collision model (e.g., the BGK model
[6]) that preserves its most relevant physical features. In the case of elastic collisions, this
route has been shown to be very fruitful since most of the exact solutions derived from the
BGK model agree rather well [7] with results obtained by numerically solving the Boltzmann
equation by means of the direct simulation Monte Carlo (DSMC) method [8]. Nevertheless,
much less is known for inelastic collisions although some exact results obtained in the simple
or uniform shear flow (USF) problem [9] and in the nonlinear Couette flow state [10] support
the reliability of the inelastic version of the BGK model [9] for granular gases as well. The
USF state is perhaps the simplest flow problem since the only nonzero hydrodynamic gradient
is ∂ux/∂y ≡ a = const, where u is the flow velocity and a is the constant shear rate. Due to
its simplicity, this state has been widely studied in the past for elastic [7] and inelastic gases
[11] as an ideal testing ground to shed light on the intricacies associated with the response
of the system to strong shear rates. Very recently [12], the inelastic BGK model has been
applied to determine the transport coefficients for a granular gas in spatially inhomogeneous
states close to the USF. The heat and momentum fluxes were evaluated to first order in the
deviations of the hydrodynamic field gradients from their values in the reference USF state.
Given that the system is strongly sheared, the corresponding transport coefficients turn out to
be nonlinear functions of both the shear rate and the coefficient of restitution. This is the main
new ingredient of these constitutive equations. In addition, due to the mathematical difficulties
involved in the general problem, results were restricted to a particular kind of perturbations
for which the steady state conditions of the USF hold [12]. This allowed us to perform a linear
stability analysis of the hydrodynamic equations with respect to the USF state.

As happens for elastic collisions, a possibility of analyzing transport around USF retaining
the explicit form of the Boltzmann collision operator is to consider inelastic Maxwell models
(IMM), i.e., models for which the collision rate is independent of the relative velocity of the
two colliding particles. Although these IMM do not correspond to any microscopic interaction,
it has been shown by several authors [13] that the cost of sacrificing physical realism can be
in part compensated by the amount of exact analytical results derived from this interaction
model. This is the main reason why IMM have attracted the attention of physicists and
mathematicians since the beginning of the century. On the other hand, beyond its academic
interest, it must be remarked that recent experiments [14] for magnetic grains with dipolar
interactions in air in a two-dimensional geometry have been accurately described by IMM.
The excellent quantitative agreement found between the magnetic particles experiments [14]
and IMM suggests that magnetic particles can be considered as an ideal experimental probe
for the predictions of this analytically tractable kinetic theory.

The main advantage of using IMM instead of IHS is that a velocity moment of order
k of the Boltzmann collision operator only involves moments of order less than or equal
to k. This allows one to evaluate the Boltzmann collision moments without the explicit
knowledge of the velocity distribution function [15]. Thanks to this simplification, the velocity
moments of IMM under USF can be computed as functions of the shear rate. Very recently
[16], the first nontrivial shear-rate-dependent moments of USF for IMM have been explicitly
computed: the second-degree moments which are directly related to rheological properties
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and the fourth-degree moments whose knowledge is necessary to get the heat flux around USF.
The knowledge of these moments allows one to re-examine the problem studied in [12] in the
context of the Boltzmann equation and without any restriction on the kind of perturbations to
USF considered. In addition, the comparison between the transport coefficients derived here
with those obtained from IHS [12] can be used again as a test to assess the degree of usefulness
of IMM as a prototype model for granular flows. Previous comparisons between IMM and
IHS for inhomogeneous situations [17–19] have shown in general good agreement (especially
for low order moments), confirming the reliability of IMM as a good approximation to model
granular systems.

Since I am interested in studying heat and momentum transport in a strongly sheared
granular gas, the physical situation is such that the gas is in a state that deviates from the
USF by small spatial gradients. Under these conditions and taking the USF state f (0) as
the reference one, the Boltzmann equation is solved by means of a Chapman–Enskog-like
expansion [20] around the distribution f (0). Since the latter applies for arbitrary values of
the shear rate a, the successive approximations in the Chapman–Enskog expansion will retain
all the hydrodynamic orders in a. Therefore, the non-equilibrium problem studied here deals
with two kinds of spatial gradients: small gradients due to perturbations of the USF and
arbitrary large gradients due to the background shear flow. In this paper, the calculations will
be restricted to first order in the spatial gradients of density, temperature and flow velocity.
At this level of approximation, the momentum transport is characterized by a viscosity tensor
ηijk�, while the heat flux is expressed in terms of a thermal conductivity tensor κij and a
new tensor µij (not present in the elastic case). The set of generalized transport coefficients
ηijk�, κij and µij are nonlinear functions of a and α. The determination of this dependence for
IMM is the primary target of this paper.

The plan of the paper is as follows. In section 2, the Boltzmann equation for IMM is
introduced and a brief summary of relevant results derived for the USF problem is given.
The Chapman–Enskog expansion around USF is described in section 3 and the linear integral
equations defining the generalized transport coefficients are displayed. Section 4 deals with the
explicit evaluation of the transport coefficients associated with the momentum and heat fluxes.
The details of the calculations are displayed along several appendices. The dependence of
some of the above coefficients on the shear rate and on the coefficient of restitution is illustrated
and compared with known results obtained for IHS [12]. The comparison shows in general
qualitative good agreement, especially in the case of the viscosity tensor ηijk�. The paper is
closed in section 6 with a brief discussion on the results reported in this paper.

2. Inelastic Maxwell models and uniform shear flow

Let us consider a granular fluid modelled as an inelastic Maxwell gas. The inelasticity of
collisions among all pairs is accounted for by a constant coefficient of restitution 0 � α � 1
that only affects the translational degrees of freedom of the grains. At a kinetic level, all
the relevant information on the state of the system is provided by the one-particle velocity
distribution function f (r, v, t). In the low-density regime the inelastic Boltzmann equation
[1, 2] gives the time evolution of f (r, v, t). The corresponding Boltzmann equation for
inelastic Maxwell models (IMM) can be obtained from the inelastic Boltzmann equation for
inelastic hard spheres (IHS) by replacing the rate for collisions between two particles (which
is proportional to the relative velocity in the case of IHS) by an average velocity-independent
collision rate. With this simplification and in the absence of an external force, the Boltzmann
equation for IMM reads
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∂

∂t
+ v · ∇

)
f (r, v, t) = J [v|f (t), f (t)], (2.1)

where the Boltzmann collision operator is

J [v1|f, f ] = ω

n�d

∫
dv2

∫
dσ̂[α−1f (v′

1)f (v′
2) − f (v1)f (v2)]. (2.2)

Here, n is the number density, �d = 2πd/2/	(d/2) is the total solid angle in d dimensions,
σ̂ is a unit vector along the line of the two colliding spheres, and g = v1 − v2 is the relative
velocity of the colliding pair. In addition, the primes on the velocities denote the initial values
{v′

1, v′
2} that lead to {v1, v2} following a binary collision:

v′
1 = v1 − 1

2 (1 + α−1)(σ̂ · g)σ̂, v′
2 = v2 + 1

2 (1 + α−1)(σ̂ · g)σ̂. (2.3)

The effective collision frequency ω is independent of velocity but depends on space and time
through its dependence on density and temperature. Here, I will assume that ω ∝ nT q , with
q � 0. The case q = 0 will be referred here as model A, while the case q �= 0 will be called
model B. Model A is closer to the original Maxwell model of elastic particles, while model B
is closer to hard spheres when q = 1

2 . Furthermore, the collision frequency ω can be also seen
as a free parameter of the model, determined to optimize the agreement with some property
of interest of the original Boltzmann equation for IHS. As in previous works [17–19], ω is
chosen here to guarantee that the cooling rate of IMM be the same as that of IHS (evaluated
at the local equilibrium approximation) [17]. With this choice, one obtains

ω = d + 2

2
ν0, ν0 = A(q)nT q, (2.4)

where the value of the quantity A(q) is irrelevant for our purposes. Henceforth, I will take
this choice for ω.

There is another more refined version of IMM [21] where the collision rate has the same
dependence on the scalar product (σ̂ · ĝ) as in the case of IHS. However, both versions of IMM
lead to similar results in problems as delicate as the high energy tails and so I will consider
here the simplest version given by equations (2.2) and (2.3).

The first d + 2 velocity moments of f define the number density

n(r, t) =
∫

dv f (r, v, t), (2.5)

the flow velocity

u(r, t) = 1

n(r, t)

∫
dv vf (r, v, t), (2.6)

and the granular temperature

T (r, t) = m

dn(r, t)

∫
dv V 2(r, t)f (r, v, t), (2.7)

where V(r, t) ≡ v − u(r, t) is the peculiar velocity. The macroscopic balance equations for
density, momentum, and energy follow directly from equation (2.1) by multiplying with 1,mv
and 1

2mv2 and integrating over v:

Dtn + n∇ · u = 0, (2.8)

Dtui + (mn)−1∇jPij = 0, (2.9)

DtT +
2

dn
(∇ · q + Pij∇jui) = −ζT , (2.10)
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where Dt = ∂t + u · ∇. The microscopic expressions for the pressure tensor P, the heat flux q
and the cooling rate ζ are given, respectively, by

P(r, t) =
∫

dv mVVf (r, v, t), (2.11)

q(r, t) =
∫

dv
1

2
mV 2Vf (r, v, t), (2.12)

ζ(r, t) = − 1

dn(r, t)T (r, t)

∫
dv mV 2J [r, v|f (t)]. (2.13)

The balance equations (2.8)–(2.10) apply regardless of the details of the interaction model
considered. The influence of the collision model appears through the α-dependence of the
cooling rate and of the momentum and heat fluxes. In particular, the cooling rate ζ is given
by [17]

ζ = 1 − α2

2d
ω = d + 2

4d
(1 − α2)ν0. (2.14)

Let us assume that the gas is under USF. This idealized macroscopic state is characterized
by a constant density, a uniform temperature and a simple shear with the local velocity field
given by

ui = aij rj , aij = aδixδjy, (2.15)

where a is the constant shear rate. This linear velocity profile assumes no boundary layer near
the walls and is generated by the Lees–Edwards boundary conditions [24], which are simply
periodic boundary conditions in the local Lagrangian frame moving with the flow velocity
[25]. Since the heat flux is zero in the USF problem, the balance equation for the energy (2.10)
reads

ν−1
0 ∂t ln T = −ζ ∗ − 2a∗

d
P ∗

xy, (2.16)

where ζ ∗ = ζ/ν0, a
∗ = a/ν0, P

∗
xy = Pxy/p, p = nT being the hydrostatic pressure.

Equation (2.16) shows that the temperature changes in time due to the competition between
two (opposite) mechanisms: on the one hand, viscous (shear) heating and, on the other hand,
energy dissipation in collisions. The reduced shear rate a∗ is the nonequilibrium relevant
parameter of the USF problem since it measures the departure of the system from equilibrium.
Note that, except for model A (q = 0), a∗(t) ∝ T (t)−q is a function of time through its
dependence on temperature. Since in the hydrodynamic regime P ∗

xy(t) depends on time only
through its dependence on a∗(t) [7], then for q �= 0 a steady state is eventually reached in the
long time limit when both viscous heating and collisional cooling cancel each other and the
fluid autonomously seeks the temperature at which the above balance occurs. In this situation,
a∗ and α are not independent quantities but they are related through the steady state condition:

a∗P ∗
xy = −d

2
ζ ∗. (2.17)

However, when q = 0, the collision frequency ν0 is independent of temperature and a∗ remains
constant in time, so that there is no steady state (except if a∗ takes the specific value given
by (2.17)). Consequently, only in the case of model A the reduced shear rate a∗ and the
coefficient of restitution α are in general independent parameters in the USF state. Note
that, although the temperature changes in time, the distribution of velocities relative to
the thermal speed

√
2T/m is expected to reach, after a sufficient number of collisions per
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particle, a stationary form that only depends on the control parameters a∗ and α [22]. As
a consequence, when the velocity moments are conveniently scaled with the thermal speed,
they reach stationary values after a kinetic transient regime [16, 23]. These steady values are
nonlinear functions of both the (reduced) shear rate and the coefficient of restitution. More
details on the USF state for dissipative systems can be found in [16].

The USF problem is perhaps the nonequilibrium state most widely studied in the past few
years both for granular and conventional gases [7, 11]. At a microscopic level, it becomes
spatially homogeneous when the velocities of the particles are referred to the Lagrangian
frame of reference co-moving with the flow velocity u [25]. In this frame, the one-
particle distribution function adopts the uniform form, f (r, v) → f (V), and the Boltzmann
equation (2.1) reads(

∂t − aVy

∂

∂Vx

)
f (V) = J [V|f, f ] . (2.18)

Upon writing equation (2.18), the following identity has been used:

v · ∇f = vy

∂f

∂ux

∂ux

∂y
= −aVy

∂f

∂Vx

, (2.19)

where in the last step I have taken into account that f depends on u through the peculiar velocity
V. The elements of the pressure tensor provide information on the rheological properties of
the system. These elements can be obtained by multiplying the Boltzmann equation (2.18) by
mViVj and integrating over V. The result is [15–17]

∂tPij + ai�Pj� + aj�Pi� = −ν0|2(Pij − pδij ) − ζpδij , (2.20)

where

ν0|2 = ζ +
(1 + α)2

4
ν0. (2.21)

In the case of model A (q = 0), the set of first-order differential equations (2.20) can be
exactly solved [16]. In terms of the reduced elements P ∗

ij = Pij (t)/p(t), the solution can be
written as

P ∗
xx = 1 + 2dγ (̃a)

1 + 2γ (̃a)
, P ∗

yy = P ∗
zz = 1

1 + 2γ (̃a)
, (2.22)

P ∗
xy = −d

γ (̃a)

ã
= − ã

[1 + 2γ (̃a)]2
, (2.23)

where

ã = a

ω0|2
, ω0|2 = ν0|2 − ζ = (1 + α)2

4
ν0, (2.24)

and γ (̃a) is the real root of the cubic equation

γ (1 + 2γ )2 = ã2

d
, (2.25)

namely,

γ (̃a) = 2

3
sinh2

[
1

6
cosh−1

(
1 +

27

d
ã2

)]
. (2.26)

Insertion of equations (2.22) and (2.23) into equation (2.20) yields

∂t ln T = 2λ, (2.27)
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where I have called

λ = 2γ (̃a)ω0|2 − ζ. (2.28)

In the elastic limit (α = 1), ã = a∗, and equations (2.22)–(2.28) reduce to the well-known
exact solution obtained long time ago by Ikenberry and Truesdell for Maxwell molecules [26].
Equation (2.27) shows that T (t) either grows or decays exponentially. The first situation
happens if 2γ (̃a)ω0|2 > ζ . In that case, the imposed shear rate is sufficiently large (or the
dissipation in collisions is sufficiently low) as to make the viscous heating effect dominate
over the inelastic cooling effect. The opposite happens if 2γ (̃a)ω0|2 < ζ .

Beyond rheological properties, the next nontrivial moments in the USF problem are
the fourth-degree velocity moments. These moments are needed to determine the transport
properties of the gas in states close to USF, which is the main goal of this paper. Very
recently, the dependence of the fourth-degree moments on the shear rate and the coefficient of
restitution has been explicitly obtained for IMM [16]. Their explicit expressions are displayed
in appendix A for a three-dimensional gas (d = 3). In a similar way to the case of elastic
Maxwell molecules [7], it has been shown that, for a given value of α, the fourth-degree
moments are divergent for shear rates larger than a certain critical value ac(α). This singular
behaviour of the moments reflects the existence of an algebraic high-velocity tail in the
distribution function. However, for practical reasons, since in general the numerical value
ac(α) is rather large, nonlinear shearing effects are still significant for a < ac.

As said before, in the case of model B (q �= 0), after a transient regime the system
achieves a steady state, so that λ = 0 and equation (2.28) leads to

γ (̃a) = d + 2

2d

1 − α

1 + α
. (2.29)

The steady solution for the pressure tensor is still given by equations (2.22) and (2.23), except
that ã (or, equivalently a∗) and α are not independent quantities. The explicit dependence
of the steady-state value a∗

s (α) of the reduced shear rate can be easily obtained by inserting
condition (2.29) into equation (2.25):

a∗
s (α) =

√
d + 2

2
(1 − α2)

d + 1 − α

2d
. (2.30)

It must be remarked that the steady-state results are ‘universal’ in the sense that they hold both
for models A and B, regardless of the precise dependence ν0(t) [16]. For elastic collisions,
equation (2.30) yields a∗ = 0 and so the equilibrium results are recovered, i.e., P ∗

ij = δij .
The analytical results obtained for the steady USF state in the case of model B [18] agree
quite well with Monte Carlo simulations of the Boltzmann equation for IHS [27, 28], even for
strong dissipation.

3. Small perturbations around the uniform shear flow state

Let us assume now that we disturb the USF by small spatial perturbations. The response of
the system to these perturbations gives rise to additional contributions to the momentum and
heat fluxes, which can be characterized by generalized transport coefficients. Since the system
is strongly sheared, the corresponding transport coefficients are highly nonlinear functions of
the shear rate. The goal here is to determine the shear-rate dependence of these coefficients
for IMM.

To analyse this problem, one has to start from the Boltzmann equation (2.1) with a
general time and space dependence. First, it is convenient to keep using the relative velocity
V = v − u0, where u0 = a · r is the flow velocity of the undisturbed USF state. Here, the
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only nonzero element of the tensor a is aij = aδixδjy . On the other hand, in the disturbed
state the true velocity u is in general different from u0, i.e., u = u0 + δu, δu being a small
perturbation to u0. As a consequence, the true peculiar velocity is now c ≡ v − u = V − δu.
In the Lagrangian frame moving with velocity u0, the convective operator v · ∇ can be written
as

v · ∇f = (V + u0) · ∇f = −aVy

∂

∂Vx

f + (V + u0) · ∇f, (3.1)

where the derivative ∇f in the last term must be taken now at constant V. According to the
identity (3.1), the Boltzmann equation reads

∂

∂t
f − aVy

∂

∂Vx

f + (V + u0) · ∇f = J [V|f, f ]. (3.2)

I am interested in computing the transport coefficients in a state that slightly deviates from the
USF. For this reason, I assume that the spatial gradients of the hydrodynamic fields

A(r, t) ≡ {n(r, t), T (r, t), δu(r, t)} (3.3)

are small. Under these conditions, a solution to the Boltzmann equation (3.2) can be obtained
by means of a generalization of the conventional Chapman–Enskog method [4], where the
velocity distribution function is expanded about a local shear flow reference state in terms of
the small spatial gradients of the hydrodynamic fields relative to those of USF. This type of
Chapman–Enskog-like expansion has been considered in the case of elastic gases to obtain the
set of shear-rate-dependent transport coefficients [7, 29] in a thermostatted shear flow problem
and it has also been recently considered [12, 20, 30] in the context of inelastic gases.

The Chapman–Enskog method assumes the existence of a normal solution in which all
space and time dependence of the distribution function occurs through a functional dependence
on the fields A(r, t), i.e.,

f (r, V, t) ≡ f [V|A(r, t)]. (3.4)

This solution expresses the fact that the space dependence of the shear flow is completely
absorbed in the relative velocity V and all other space and time dependence occurs entirely
through a functional dependence on the fields A(r, t). This functional dependence can be made
local by an expansion of the distribution function in powers of the hydrodynamic gradients:

f (r, V, t) = f (0)(V|A(r, t)) + f (1)(V|A(r, t)) + · · · , (3.5)

where the reference zeroth-order distribution function corresponds to the USF distribution
function but taking into account the local dependence of the density and temperature and the
change V → c = V − δu(r, t). The new feature of this Chapman–Enskog expansion (in
contrast with the conventional one) is that the successive approximations f (k) are of order k in
the gradients of n, T and δu but retain all the orders in the shear rate a. More technical details
on this Chapman–Enskog-like type of expansion can be found in appendix B.

The expansion (3.5) yields the corresponding expansion for the fluxes and the cooling
rate when one substitutes (3.5) into their definitions (2.11)–(2.13):

P = P(0) + P(1) + · · · , q = q(0) + q(1) + · · · , ζ = ζ (0) + ζ (1) + · · · . (3.6)

Finally, as in the usual Chapman–Enskog method, the time derivative is also expanded as

∂t = ∂
(0)
t + ∂

(1)
t + ∂

(2)
t + · · · , (3.7)

where the action of each operator ∂
(k)
t is also defined in appendix B. In this paper, only the

zeroth- and first-order approximations will be considered.
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3.1. Zeroth-order approximation

Substituting the expansions (3.5) and (3.7) into equation (3.2), the kinetic equation for f (0) is
given by

∂
(0)
t f (0) − aVy

∂

∂Vx

f (0) = J [V|f (0), f (0]. (3.8)

To lowest order in the expansion the conservation laws give

∂
(0)
t n = 0, ∂

(0)
t T = − 2

dn
aP (0)

xy − T ζ, (3.9)

∂
(0)
t δui + aij δuj = 0. (3.10)

Upon writing the second identity in equation (3.9) I have taken into account that the effective
collision frequency ω ∝ nT q is assumed to be a functional of f only through the density and
temperature. Consequently, ω(0) = ω,ω(1) = ω(2) = · · · = 0 and, using equation (2.14),
ζ (0) = ζ, ζ (1) = ζ (2) = · · · = 0. It must be noticed that, in the case of IHS, ζ (1) is different
from zero but quite small [12].

Since f (0) is a normal solution, its dependence on time only occurs through n, δu and T:

∂
(0)
t f (0) = ∂f (0)

∂n
∂

(0)
t n +

∂f (0)

∂T
∂

(0)
t T +

∂f (0)

∂δui

∂
(0)
t δui

= −
(

2

dn
aP (0)

xy + T ζ

)
∂

∂T
f (0) − aij δuj

∂

∂δui

f (0)

= −
(

2

dn
aP (0)

xy + T ζ

)
∂

∂T
f (0) + aij δuj

∂

∂ci

f (0), (3.11)

where I have taken into account again that f (0) depends on δu through c. Substitution of
equation (3.11) into equation (3.8) yields the following kinetic equation for f (0):

−
(

2

dn
aP (0)

xy + T ζ

)
∂

∂T
f (0) − acy

∂

∂cx

f (0) = J [V|f (0), f (0]. (3.12)

The zeroth-order solution leads to q(0) = 0. In the case of model A, the zeroth-order pressure
tensor is given by equations (2.22) and (2.23) while the expressions of the fourth-degree
moments are displayed in appendix A. As shown in [12, 20, 30], for given values of a and α,
the steady state condition (2.17) establishes a mapping between the density and temperature
so that every density corresponds to one and only one temperature. Since the density n(r, t)
and temperature T (r, t) are specified separately in the local USF state, the viscous heating
only partially compensates for the collisional cooling and so, ∂

(0)
t T �= 0 [20]. Consequently,

the zeroth-order distribution f (0) depends on time through its dependence on temperature and
the quantities a∗ and α must be considered as independent parameters for general infinitesimal
perturbations around the USF state. This fact gives rise to new and conceptual practical
difficulties not present in the previous analysis made for elastic thermostatted gases [29].

The set of equations for P
(0)
ij follows from equation (3.12) as

−
(

2

dn
aP (0)

xy + T ζ

)
∂

∂T
P

(0)
ij + ai�P

(0)
j� + aj�P

(0)
i� = −ν0|2

(
P

(0)
ij − pδij

) − ζpδij . (3.13)

The dependence of P
(0)
ij on temperature occurs explicitly through the hydrostatic pressure

p = nT and through its dependence on a∗. Consequently,

T
∂

∂T
P

(0)
ij = T

∂

∂T
pP ∗

ij (a
∗) = p

(
1 − qa∗ ∂

∂a∗

)
P ∗

ij (a
∗), (3.14)
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where here P ∗
ij = P

(0)
ij

/
p. Thus, in dimensionless form equation (3.13) becomes

−
(

2

d
a∗P ∗

xy + ζ ∗
) (

1 − qa∗ ∂

∂a∗

)
P ∗

ij + a∗
i�P

∗
j� + a∗

j�P
∗
i� = −ν∗

0|2(P
∗
ij − δij ) − ζ ∗δij , (3.15)

where ν∗
0|2 = ν0|2/ν0. For q = 0 (model A), the solution to equation (3.15) is given by

equations (2.22) and (2.23). For q �= 0 (model B), equation (3.15) must be solved numerically
to obtain the dependence of P ∗

ij on a∗. In the case of IHS
(
q = 1

2

)
, a detailed study of the

dependence of P ∗
ij on a∗ has been carried out in [23]. For elastic gases (α = 1), a comparison

between the results derived for Maxwell molecules (q = 0) and hard spheres
(
q = 1

2

)
at the

level of rheological properties has shown that both results are very close [7] so that there is
a weak influence of the interaction model on transport properties. This suggests to expand
the transport properties in powers of the interaction parameter q as an alternative to obtain
accurate analytical results for non-Maxwell molecules. For inelastic collisions, I expect that
such a good agreement is also kept and so the following formal expansion in q is considered:

P ∗
ij (a

∗) = P ∗
ij,A(a∗) + q�P ∗

ij (a
∗) + · · · , (3.16)

where P ∗
ij,A(a∗) is the known result for model A. Inserting equation (3.16) into equation (3.15)

and neglecting terms nonlinear in q, one obtains

�P ∗
yy = − 6λ∗

ω∗
0|2

γ

(1 + 2γ )(1 + 6γ )2
, (3.17)

�P ∗
xy = − λ∗ã

ω∗
0|2

1 − 6γ

(1 + 2γ )2(1 + 6γ )2
, (3.18)

where ω∗
0|2 = ω0|2/ν0 and λ∗ = λ/ν0, λ being given by equation (2.28). Upon writing

equations (3.17) and (3.18), the following relations have been used:

a∗ ∂

∂a∗ P ∗
yy,A = − 4γ

(1 + 2γ )(1 + 6γ )
, (3.19)

a∗ ∂

∂a∗ P ∗
xy,A = −ã

1 − 2γ

(1 + 2γ )2(1 + 6γ )
. (3.20)

From equation (3.16) and taking into account equations (2.22) and (2.23), the expressions for
the elements of the pressure tensor for model B can be written as

P ∗
xx = 1

1 + 2γ

[
1 + 2dγ − q

6γ λ∗

ω∗
0|2

1 − d

(1 + 6γ )2

]
, (3.21)

P ∗
yy = P ∗

zz = 1

1 + 2γ

[
1 − q

6γ λ∗

ω∗
0|2(1 + 6γ )2

]
, (3.22)

P ∗
xy = − ã

(1 + 2γ )2

[
1 + q

λ∗

ω∗
0|2

1 − 6γ

(1 + 6γ )2

]
. (3.23)

As expected, when the steady state condition (2.4) applies locally, then ∂
(0)
t T = 0, λ∗ = 0 so

that, according to equations (3.17) and (3.18), the results for the pressure tensor are independent
of the model interaction considered. Note that the same type of approximation (3.16)
can be used to estimate the fourth-degree moments for q �= 0, although this calculation
will be omitted here for simplicity.
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Figure 1. Shear-rate dependence of the elements of the reduced pressure tensor P ∗
ij = P

(0)
ij /p for

α = 1 in the three-dimensional case. The solid lines correspond to the results obtained for model
A (q = 0) while the dashed lines refer to the results derived for model B for q = 1

2 by using the
approximation (3.16).

Figure 2. Shear-rate dependence of the elements of the reduced pressure tensor P ∗
ij = P

(0)
ij /p for

α = 0.5 in the three-dimensional case. The solid lines correspond to the results obtained for model
A (q = 0) while the dashed lines refer to the results derived for model B for q = 1

2 by using the
approximation (3.16).

Figures 1 and 2 show the dependence of the reduced pressure tensor P ∗
ij on the reduced

shear rate a∗ for a three-dimensional system (d = 3) and two different values of the coefficient
of restitution: α = 1 and α = 0.5. I have considered the exact results obtained for model
A and the results for model B (when q = 1

2 ) by using approximation (3.16). It is quite
apparent that, for a given interaction model, there is a weak influence of the inelasticity on the
shear-rate dependence of the pressure tensor elements. Furthermore, for a given value of α,
the differences between the results obtained for models A and B are very small in the range
of shear rates considered. This means that the rheological properties are quite insensitive to
the interaction model considered, even for strong dissipation. The dependence of the pressure
tensor on dissipation in the steady state (i.e., when the (reduced) shear rate and the coefficient
of restitution α are not independent parameters but they are related through equation (2.30))
is plotted in figure 3 along with the results obtained for IHS [23, 27]. It can be observed
that the IMM results reproduce very well the IHS predictions over the range of values of the
coefficient of restitution analysed.

3.2. First-order approximation

The analysis to first order in the gradients is worked out in appendix B. Only the final results
are presented in this section. The distribution function f (1) is of the form

f (1) = Xn · ∇n + XT · ∇T + Xu : ∇δu, (3.24)
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Figure 3. Plot of the reduced elements of the pressure tensor P∗ as functions of the coefficient of
restitution α in the steady USF state. The solid lines are the results derived here for IMM while
the dashed lines correspond to the results obtained for IHS in [27].

where the vectors Xn and XT and the tensor Xu are functions of the true peculiar velocity c.
They are the solutions of the following linear integral equations:

−
[(

2

dn
aP (0)

xy + T ζ

)
∂T + acy

∂

∂cx

− L
]

Xn,i +
T

n

[
2a

dp
(1 − n∂n)P

(0)
xy − ζ

]
XT,i = Yn,i ,

(3.25)

−
[(

2

dn
aP (0)

xy + T ζ

)
∂T +

2a

dp
T

(
∂T P (0)

xy

)
+ (q + 1)ζ + acy

∂

∂cx

− L
]

XT,i = YT,i , (3.26)

−
[(

2

dn
aP (0)

xy + T ζ

)
∂T + acy

∂

∂cx

− L
]

Xu,k� − aδkyXu,x� = Yu,k�, (3.27)

where Yn(c), YT (c) and Yu(c) are defined by equations (B.10)–(B.12), respectively. In
addition, L is the linearized Boltzmann collision operator around the reference USF state:

LX ≡ −(J [f (0), X] + J [X, f (0)]). (3.28)

It is worth noting that for q = 1
2 , equations (3.25)–(3.27) have the same structure as that of

the Boltzmann equation for IHS [12]. The only difference between both models lies in the
explicit form of the linearized operator L.

With the distribution function f (1) determined by equation (3.24), the first-order
corrections to the fluxes are

P
(1)
ij = −ηijk�

∂δuk

∂r�

, (3.29)

q
(1)
i = −κij

∂T

∂rj

− µij

∂n

∂rj

, (3.30)

where

ηijk� = −
∫

dc mcicjXu,k�(c), (3.31)

κij = −
∫

dc
m

2
c2ciXT,j (c), (3.32)

µij = −
∫

dc
m

2
c2ciXn,j (c). (3.33)
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Upon writing equations (3.29)–(3.33), the symmetry properties of Xn,i, XT,i and Xu,ij have
been used. In general, the set of generalized transport coefficients ηijk�, κij and µij are
nonlinear functions of the coefficient of restitution α and the reduced shear rate a∗. The
anisotropy induced in the system by the presence of shear flow gives rise to new transport
coefficients, reflecting broken symmetry. The momentum flux is expressed in terms of a
viscosity tensor ηijk�(a

∗, α) of rank 4 which is symmetric and traceless in ij due to the
properties of the pressure tensor P

(1)
ij . The heat flux is expressed in terms of a thermal

conductivity tensor κij (a
∗, α) and a new tensor µij (a

∗, α). Of course, for a∗ = 0 and
α = 1, the usual Navier–Stokes constitutive equations for ordinary gases are recovered and
the transport coefficients become

ηijk� → η0

(
δikδj� + δjkδi� − 2

d
δij δk�

)
, κij → κ0δij , µij → 0, (3.34)

where η0 = p/ν0 and κ0 = d(d + 2)η0/2(d − 1)m are the shear viscosity and thermal
conductivity coefficients for elastic collisions [4].

4. Shear-rate-dependent transport coefficients

This section is devoted to the determination of the generalized transport coefficients ηijk�, κij

and µij associated with the momentum and heat fluxes. Let us consider each flux separately.

4.1. Momentum flux

To first order in the hydrodynamic gradients, the momentum flux is given by equation (3.29).
To obtain the coefficient ηijk�, I multiply both sides of equation (3.27) by mcicj and integrate
over c. The result is(

2

dn
aP (0)

xy + T ζ

)
∂T ηijk� − a(δixηjyk� + δjxηiyk� − δkyηijx�) − ν0|2ηijk�

= − δk�(1 − n∂n)P
(0)
ij − (

δikP
(0)
j� + δjkP

(0)
i�

)
+

2

dn

(
P

(0)
k� − aηxyk�

)
∂T P

(0)
ij .

(4.1)

Upon writing equation (4.1), the following results have been used [17, 15]:∫
dc mcicjLXu,k� = −ν0|2ηijk�, (4.2)∫
dc mcicjYu,k� = −δk�(1 − n∂n)P

(0)
ij − (

δikP
(0)
j� + δjkP

(0)
i�

)
+

2

dn

(
P

(0)
k� − aηxyk�

)
∂T P

(0)
ij . (4.3)

The generalized shear viscosity can be written as ηijk� = η0η
∗
ijk�(a

∗) where η∗
ijk�(a

∗) is a
dimensionless function of the reduced shear rate a∗ and the coefficient of restitution α. The
dependence of η∗

ijk� on temperature is through the reduced shear rate a∗ and so

T ∂T ηijk� = T ∂T η0η
∗
ijk�(a

∗) = (1 − q)ηijk� − qηijk�a
∗∂a∗ ln η∗

ijk�(a
∗). (4.4)

Consequently, in dimensionless form, equation (4.1) yields(
2

d
a∗P ∗

xy + ζ ∗
)

[1 − q(1 + a∗∂a∗)]η∗
ijk� − a∗(δixη

∗
jyk� + δjxη

∗
iyk� − δkyη

∗
ijx�) − ν∗

0|2η
∗
ijk�

= −δk�a
∗∂a∗P ∗

ij − (δikP
∗
j� + δjkP

∗
i�) +

2

d
(P ∗

k� − a∗η∗
xyk�)(1 − qa∗∂a∗)P ∗

ij , (4.5)
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where the following identity has been used:

n
∂

∂n
P

(0)
ij = n

∂

∂n
pP ∗

ij (a
∗) = p

(
1 − a∗ ∂

∂a∗

)
P ∗

ij (a
∗). (4.6)

In the absence of shear field (a∗ = 0), P ∗
ij = δij , and so equation (4.5) has the solution

η∗
ijk� = [ν∗

0|2 − ζ ∗(1 − q)]−1

(
δikδj� + δjkδi� − 2

d
δij δk�

)
. (4.7)

This expression coincides with the one derived by Santos [17] for IMM for vanishing shear
rates. Beyond this limit case, in general equation (4.5) is a nonlinear differential equation that
must be solved with the appropriate boundary conditions to obtain the hydrodynamic solution.
The simplest model is that of model A, in which case the set (4.5) becomes a set of coupled
algebraic equations.

4.1.1. Model A. When q = 0, then the shear viscosity obeys the equation(
2

d
a∗P ∗

xy − ω∗
0|2

)
η∗

ijk� − a∗(δixη
∗
jyk� + δjxη

∗
iyk� − δkyη

∗
ijx�)

= − δk�a
∗∂a∗P ∗

ij − (δikP
∗
j� + δjkP

∗
i�) +

2

d
(P ∗

k� − a∗η∗
xyk�)P

∗
ij . (4.8)

The explicit dependence of η∗
ijk� on a∗ and α can be obtained by solving the set of algebraic

equations (4.8). As an example, the coefficients of the form η∗
ijxy are obtained in detail in

appendix C. The nonzero elements of η∗
ijxy are given by

η∗
xyxy = 1

ω∗
0|2

1 − 2γ

(1 + 2γ )2(1 + 6γ )
, (4.9)

η∗
xxxy = 4

ω∗
0|2

1 − d

d

ã

(1 + 2γ )3(1 + 6γ )
, (4.10)

η∗
yyxy = η∗

zzxy = 4

dω∗
0|2

ã

(1 + 2γ )3(1 + 6γ )
. (4.11)

When α = 1, equation (4.9) reduces to the one previously derived for elastic gases [29].

4.1.2. Model B. When q �= 0, the coefficients η∗
ijk� must be obtained numerically. However,

assuming that the dependence of η∗
ijk� on a∗ and α for q �= 0 does not differ significantly from

that obtained for model A (q = 0), one can consider again the approximation

η∗
ijk� = η∗

ijk�,A + q�η∗
ijk� + · · · , (4.12)

to obtain analytical results for η∗
ijk�. In equation (4.12), η∗

ijk�,A refers to the known result for
model A. The unknown �η∗

ijk� can be determined by inserting (4.12) into equation (4.5) and
retaining only linear terms in q. As an illustration, the quantities �η∗

ijxy are also evaluated in
appendix C. Their explicit expressions are given by equations (C.6)–(C.10).

4.2. Heat flux

The heat flux is defined by equation (3.30) in terms of the coefficients κij , equation (3.32) and
µij , equation (3.33). To obtain these generalized Navier–Stokes coefficients, let us introduce
the tensors
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κijk� = −
∫

dc
m

2
cicj ckXT,�(c), (4.13)

µijk� = −
∫

dc
m

2
cicj ckXn,�(c). (4.14)

The generalized thermal conductivity κij and the new coefficient µij are given by

κij = κkkij , µij = µkkij . (4.15)

Let us consider first the tensor κijk�. To obtain it, I multiply both sides of equation (3.26)
by m

2 cicj ck and integrate over velocity. After some algebra, one obtains(
2

dn
aP (0)

xy + T ζ

)
∂T κijk� +

(
2a

dp

(
T ∂T P (0)

xy

)
+ (q + 1)ζ − ν0|3

)
κijk�

− a(δixκjky� + δjxκiky� + δkxκijy�)

− ν2|1 − ν0|3
d + 2

(δjkκi� + δikκj� + δij κk�) = −m

2
∂T N

(0)
ijk�

+
1

2mn

(
P

(0)
kj ∂T P

(0)
i� + P

(0)
ik ∂T P

(0)
j� + P

(0)
ij ∂T P

(0)
k�

)
, (4.16)

where [15]

ν2|1 = (1 + α)[5d + 4 − (d + 8)α]

8d
ν0, ν0|3 = 3

2
ν0|2, (4.17)

N
(0)
ijk� =

∫
dc cicj ckc�f

(0)(c). (4.18)

Upon writing equation (4.16), the following results have been used:∫
dc

m

2
cicj ckLXT,� = −ν0|3κijk� − ν2|1 − ν0|3

d + 2
(δjkκi� + δikκj� + δij κk�), (4.19)∫

dc
m

2
cicj ckYT,� = −m

2
∂T N

(0)
ijk� +

1

2mn

(
P

(0)
kj ∂T P

(0)
i� + P

(0)
ik ∂T P

(0)
j� + P

(0)
ij ∂T P

(0)
k�

)
. (4.20)

As in the case of the shear viscosity, the thermal conductivity tensor κij can also be written
as κij = κ0κ

∗
ij (α, a∗), where κ∗

ij is a dimensionless function of a∗ and α. Thus,

T ∂T κijk� = T ∂T κ0κ
∗
ijk�(a

∗) = (1 − q)κijk� − qκijk�a
∗∂a∗ ln κ∗

ijk�(a
∗). (4.21)

In addition, the derivative ∂T N
(0)
ijk� of the fourth-degree moments of the zeroth-order distribution

can be evaluated as

T ∂T N
(0)
ijk� = 4

nT 2

m2
(2 − qa∗∂a∗)N∗

ijk�(a
∗), (4.22)

where I have introduced the reduced fourth-degree moments

N∗
ijk�(a

∗) = 1

4

m2

nT 2
N

(0)
ijk�. (4.23)

Finally, in dimensionless form, equation (4.16) becomes(
2

d
a∗P ∗

xy + ζ ∗
)

[1 − q(1 + a∗∂a∗)]κ∗
ijk� +

[
2a∗

d
(1 − qa∗∂a∗)P ∗

xy + (q + 1)ζ ∗ − ν∗
0|3

]
κ∗

ijk�

− a∗(δixκ
∗
jky� + δjxκ

∗
iky� + δkxκ

∗
ijy�) − ν∗

2|1 − ν∗
0|3

d + 2
(δjkκ

∗
i� + δikκ

∗
j� + δij κ

∗
k�)

= −4(d − 1)

d(d + 2)
(2 − qa∗∂a∗)N∗

ijk� +
d − 1

d(d + 2)
[P ∗

kj (1 − qa∗∂a∗)P ∗
i�

+ P ∗
ik(1 − qa∗∂a∗)P ∗

j� + P ∗
ij (1 − qa∗∂a∗)P ∗

k�], (4.24)

where ν∗
0|3 = ν0|3/ν0 and ν∗

2|1 = ν2|1/ν0.



10744 V Garzó

The set of equations defining the elements of the tensor µijk� can be easily obtained by
following similar mathematical steps as those just made for the thermal conductivity tensor.
Thus, the reduced tensor µ∗

ijk� = (n/T κ0)µijk� is determined from(
2

d
a∗P ∗

xy + ζ ∗
)

[2 − q(1 + a∗∂a∗)]µ∗
ijk� −

(
2a∗2

d
(∂a∗P ∗

xy) − ζ ∗
)

κ∗
ijk�

− ν∗
0|3µ

∗
ijk� − a∗(δixµ

∗
jky� + δjxµ

∗
iky� + δkxµ

∗
ijy�)

− ν∗
2|1 − ν∗

0|3
d + 2

(δjkµ
∗
i� + δikµ

∗
j� + δijµ

∗
k�)

= −4(d − 1)

d(d + 2)
(1 − a∗∂a∗)N∗

ijk� +
d − 1

d(d + 2)
[P ∗

kj (1 − a∗∂a∗)P ∗
i�

+ P ∗
ik(1 − a∗∂a∗)P ∗

j� + P ∗
ij (1 − a∗∂a∗)P ∗

k�]. (4.25)

In the absence of shear rate (a∗ = 0), the solutions to equations (4.24) and (4.25) give the
explicit forms for the thermal conductivity tensor κ∗

ij and the tensor µ∗
ij . They can be written

as

κ∗
ij = δij

d − 1

d
(1 + c)(ν∗

2|1 − 2ζ ∗)−1, (4.26)

µ∗
ij = κ∗

ij

1 + c

ζ ∗ + 1
2cν∗

2|1
ν∗

2|1 − (2 − q)ζ ∗ , (4.27)

where the fourth cumulant c is [17]

c(α) = 12(1 − α)2

4d − 7 + 3α(2 − α)
. (4.28)

Equations (4.26) and (4.27) coincide with the previous expressions derived by Santos [17] for
the Navier–Stokes transport coefficients of IMM associated with the heat flux.

As in the case of the shear viscosity, equations (4.24) and (4.25) become algebraic
for model A (q = 0). Even for this model, although the solution to equations (4.24)
and (4.25) is simple, it involves a quite tedious algebra due to the presence of the fourth-
degree moments N∗

ijk� whose expressions for hard spheres (d = 3) are displayed in appendix
A. As an illustration, the detailed form of the elements κ∗

xy and κ∗
yy of the thermal conductivity

tensor is obtained in appendix C. A more complete list of the coefficients κ∗
ij and µ∗

ij can be
obtained from the author upon request.

5. Comparison with the transport coefficients for IHS

As said in the introduction, the expressions for the generalized transport coefficients of IHS
described by the Boltzmann equation have been recently derived [12, 20] when the steady state
conditions (2.30) apply. These expressions have been obtained by using a BGK-like kinetic
model of the Boltzmann equation for a three-dimensional system [12]. In this section, some of
the coefficients obtained here for IMM will be compared with those presented for IHS in the
steady state. Beyond the steady state conditions, the dependence of the generalized transport
coefficients η∗

ijk� and κ∗
ij on both the reduced shear rate a∗ and the coefficient of restitution α

will be also analysed for several situations. In this case and to the best of my knowledge, there
are no available IHS results and so a comparison between IMM and IHS cannot be carried
out.

Let us study first the coefficients η∗
xyxy and η∗

yyxy in the steady USF state. As said before,
in this situation a∗ is related to α through equation (2.30) and so, the coefficient of restitution
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Figure 4. Plot of the reduced element η∗
xyxy as a function of the coefficient of restitution α in the

steady USF state for a three-dimensional system. The solid line is the result derived here for model
A (q = 0), the dashed line refers to the result for model B for q = 1

2 by using approximation
(4.12), and the dotted line corresponds to the result obtained for IHS in [12].

Figure 5. Plot of the reduced element η∗
yyxy as a function of the coefficient of restitution α in the

steady USF state for a three-dimensional system. The solid line is the result derived here for model
A (q = 0), the dashed line refers to the result for model B for q = 1

2 by using approximation
(4.12), and the dotted line corresponds to the results obtained for IHS in [12].

is the only control parameter of the system. Figures 4 and 5 show the α-dependence of η∗
xyxy

and η∗
yyxy , respectively, as given by models A, B with q = 1

2 by using approximation (4.12),
and IHS [12] in the steady USF state. It is apparent that the agreement between the predictions
of model B for IMM (which tries to mimic the true IHS model) and IHS is excellent in the
whole range of values of α analysed. This confirms the reliability of IMM to reproduce the
main trends observed for the coefficients η∗

ijk�. Regarding the results for models A and B,
we observe quantitative differences between both models for the coefficient η∗

yyxy for strong
dissipation. In the case of general perturbations, the shear-rate dependence of the ratios
η∗

yyxy(a
∗)/η∗

yyxy(0) and η∗
xyxy(a

∗)/η∗
xyxy(0) is plotted in figures 6 and 7, respectively, for two

values of the coefficient of restitution: α = 1 and α = 0.5. Here, η∗
ijxy(0) is the value of

η∗
ijxy for vanishing shear rates given by equations (C.3) for model A and equations (C.11)

and (C.12) for model B. We observe that, in general, the ratios η∗
ijxy(a

∗)/η∗
ijxy(0) are

monotonically decreasing functions of the shear rate (shear-thinning effect), except in the
region of small shear rates in the case of model B for η∗

xyxy(a
∗)/η∗

xyxy(0) when α = 0.5.
Figures 6 and 7 also show that, at a given value of a∗, the value of η∗

ijxy(a
∗)/η∗

ijxy(0) decrease
with dissipation. This means that the inelasticity produces an inhibition of the momentum
transport since the value of

∣∣P (1)
xy

∣∣ for inelastic collisions is smaller than that obtained in the
elastic case.

Next, the thermal conductivity tensor κ∗
ij is considered when the steady conditions (2.30)

hold. The dependence of the elements κ∗
yy and κ∗

xy on α is plotted in figure 8 for IMM
(in the case of model A) and for IHS [12]. As happens for the usual thermal conductivity
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Figure 6. Shear-rate dependence of the ratio η∗
xyxy(a∗)/η∗

xyxy(0) for two values of the coefficient
of restitution α in the three-dimensional case. The solid lines correspond to the results obtained
for model A (q = 0), while the dashed lines refer to the results derived for model B for q = 1

2 by
using approximation (4.12).

Figure 7. Shear-rate dependence of the ratio η∗
yyxy(a∗)/η∗

yyxy(0) for two values of the coefficient
of restitution α in the three-dimensional case. The solid lines correspond to the results obtained
for model A (q = 0), while the dashed lines refer to the results derived for model B for q = 1

2 by
using approximation (4.12).

Figure 8. Plot of the reduced elements κ∗
yy and κ∗

xy of the thermal conductivity tensor as functions
of the coefficient of restitution α in the steady USF state for a three-dimensional system. The solid
lines correspond to IMM for model A (q = 0), while the dashed lines refer to the results for IHS
derived in [12].

coefficient [19], the trends observed for IHS are strongly exaggerated by IMM, especially
at high inelasticity. It is possible that the disagreement between both interaction potentials
at the level of the heat flux might be mitigated in part if one considered model B instead of
model A for IMM. However, this would require to estimate the fourth-degree moments of
the reference state by using the approximation (3.16) for q = 1

2 , which is quite an intricate
problem. The shear-rate dependence of κ∗

ij is illustrated in figure 9 for the ratios κ∗
xy(a

∗)/κ∗
xy(0)

and κ∗
yy(a

∗)/κ∗
yy(0) for two values of the coefficient of restitution: α = 0.5 and α = 1. Here,

κ∗
xy(0) is a Burnett coefficient given by equation (C.28) and κ∗

yy(0) is the Navier–Stokes
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)
)

(
(

Figure 9. Shear-rate dependence of the ratios κ∗
yy(a∗)/κ∗

yy(0) (solid lines) and κ∗
xy(a∗)/κ∗

xy(0)

(dashed lines) for two values of the coefficient of restitution α in the three-dimensional case. All
the results have been derived from model A (q = 0).

thermal conductivity coefficient given by equation (4.26) (or, equivalently, equation (C.29)).
We see that κ∗

yy increases with a∗ in the region of shear rates considered for elastic collisions,
while it does not present a monotonic dependence on a∗ in the inelastic case since it reaches
a maximum and then decreases with respect to its Navier–Stokes value. Consequently, while
for elastic gases the shear flow enhances the transport of energy along the direction of the
gradient of the flow velocity (y axis), this is not the case for inelastic collisions for large shear
rates, where the heat flux is inhibited by the shearing motion. The off-diagonal element κ∗

xy

measures cross effects in the thermal conduction since it gives the transport of energy along
the x axis due to a thermal gradient parallel to the y axis. This cross coupling does not appear
in the linear regime as the heat flux q(1)

x is at least of Burnett order (proportional to a∗∂T /∂y).
The element κ∗

xy is negative and its absolute value decreases with respect to its Burnett value
κ∗

xy(0) as the shear rate increases, regardless of the value of dissipation.

6. Discussion

In this paper, the transport properties of d-dimensional IMM in inhomogeneous states close to
the USF state have been analysed. The physical situation is such that the granular gas is in a
state that deviates from the USF by small spatial gradients. Given that the system is subjected
to a strong shear flow, the corresponding transport coefficients associated with the irreversible
heat and momentum fluxes are nonlinear functions of the shear rate. The explicit evaluation of
these coefficients has been the primary objective of this work. The search for such expressions
has been prompted by recent results [12] derived from a simple kinetic model of the inelastic
Boltzmann equation, which provides explicit expressions for the above coefficients in the case
of IHS. Since this kinetic model is a simplified version of the nonlinear (inelastic) Boltzmann
equation, a still open problem is to obtain the explicit shear-rate dependence of these transport
coefficients when the true Boltzmann collision operator is considered. For this reason, due
to technical difficulties associated with the mathematical structure of the Boltzmann equation
for IHS, the problem studied in [12] has been revisited here for IMM. For this interaction
model, the collision rate becomes independent of the relative velocity of the two colliding
particles so that the velocity moments of order k of the Boltzmann collision operator can be
exactly written in terms of moments of order k′ � k [15]. Thanks to this feature, the second-
and fourth-degree velocity moments corresponding to the (pure) USF state have been recently
obtained [16]. The knowledge of the latter moments provides the proper basis to explicitly
evaluate transport properties around USF.
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As said before, I have been interested in a situation where weak spatial gradients of
density, velocity and temperature coexist with a strong shear rate. Under these conditions, the
Boltzmann equation is solved by means of an extension of the Chapman–Enskog method to
arbitrary reference states [20]. In the case of the USF state, due to the anisotropy induced by the
shear field, tensorial quantities are required to describe the momentum and heat fluxes instead
of the usual Navier–Stokes transport coefficients [3, 17]. In the first order of the expansion the
momentum and heat fluxes are given by equations (3.29) and (3.30), respectively, where the
components of the set of generalized transport coefficient ηijk�, κij and µij are the solutions
of equations (4.5), (4.24) and (4.25), respectively. Such coefficients are nonlinear functions
of both the shear rate and the coefficient of restitution. As expected, there are many new
transport coefficients in comparison to the case of states near equilibrium or near the cooling
state. These coefficients provide all the information on the physical mechanisms involved in
the transport of momentum and energy under shear flow. Of course, the usual form of the
Navier–Stokes coefficients for IMM is recovered in the absence of shear flow [17].

The purpose of this work has been two-fold. First, the evaluation of the shear-rate-
dependent transport coefficients of IMM is worthwhile studying by itself as a tractable model
to gain some insight into the combined effect of shear flow and dissipation on the transport
properties of the system. Second, the comparison between the exact results derived here for
IMM with those previously obtained for IHS by using a simple kinetic model allows us to
assess the relevance of IMM to reproduce the trends observed in the case of IHS. Recent
comparisons [17–19] carried out between both interaction models show good agreement,
especially in the USF problem [18].

The results derived here are given in terms of an effective collision frequency ω,
which depends on space and time through its dependence on the density and temperature.
Here, I have considered the general dependence ω ∝ nT q , where q = 0 is closer to the
original Maxwell molecules for elastic collisions and q = 1

2 is closer to hard spheres. To
make some contact with the results obtained for IHS [12], ω is chosen to reproduce the
cooling rate ζ of IHS evaluated at the local equilibrium approximation. This yields the
relation (2.4). While model A (q = 0) lends itself to exact analytical results for ηijk�, κij

and µij , that is not the case for model B (q �= 0) since the latter requires to be solved
numerically to determine the dependence of the above generalized coefficients on both the
shear rate and dissipation. However, some analytical approximate expressions can be obtained
by considering an expansion of the transport properties in powers of the interaction parameter
q. In this case, the results obtained for q = 1

2 have been compared with those obtained for IHS.
Figures 4, 5, 8 and 9 illustrate this comparison when the steady state conditions (2.17) apply
locally (and so, a∗ and α are related through equation (2.30)). It is apparent that the IMM
predictions compare quite well with IHS in the case of the viscosity tensor ηijk�, although the
discrepancies between both interaction models increase in the case of the thermal conductivity
tensor κij . In this latter case, the IMM results tend to exaggerate the trends observed for IHS.

An application of the results obtained in this paper would be to perform a linear stability
analysis of the hydrodynamic equations with respect to the steady simple shear flow state.
This analysis allows one to determine the hydrodynamic modes for states near USF as well as
the conditions for instabilities at long wavelengths. Previous results for IHS [12] in the three-
dimensional case indicate that the USF is linearly stable when the perturbations are along the
velocity gradient (y direction) only, while it becomes unstable when the perturbations are along
the vorticity direction (z direction) only. The question now is whether these conclusions are
similar in the case of IMM. Another possible direction of study is to extend the analysis made
here for a single gas to the important subject of granular mixtures. Previous works carried
out by the author and co-workers [18, 19] for mixtures of IMM have shown the tractability of
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the Maxwell kinetic theory for these complex systems and stimulate the performance of this
study in the near future.
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Appendix A. Fourth-degree moments in the USF state for model A

In this Appendix, the explicit expressions of the set of fourth-degree moments of the zeroth-
order distribution f (0) are given in the case of model A (q = 0) for a three-dimensional system
(d = 3). As the set of independent moments, it is convenient to take the (dimensionless)
Ikenberry moments [31]

{M∗
4|0,M

∗
2|xx,M

∗
2|yy,M

∗
0|yyyy,M

∗
0|zzzz,M

∗
2|xy,M

∗
0|xxxy,M

∗
0|xyyy}, (A.1)

where

M∗
4|0 = 1

n

( m

2T

)2
∫

dc c4f (0)(c), (A.2)

M∗
2|ij = 1

n

( m

2T

)2
∫

dc c2

(
cicj − 1

3
c2δij

)
f (0)(c), (A.3)

M∗
0|ijk� = 1

n

( m

2T

)2
∫

dc
[
cicj ckc� − 1

7
c2(cicj δk� + cickδj� + cic�δjk

+ cj ckδi� + cj c�δik + ckc�δij ) +
1

35
c4(δij δk� + δikδj� + δi�δjk)

]
f (0)(c). (A.4)

By using matrix form, the moments (A.1) are given by [16]

M = L−1 · C, (A.5)

where M is the column matrix defined by the set (A.1)

M =



M∗
4|0

M∗
2|xx

M∗
2|yy

M∗
0|yyyy

M∗
0|zzzz

M∗
2|xy

M∗
0|xxxy

M∗
0|xyyy


, (A.6)

and L is the square matrix

L = 4ω∗
0|2γI + L′, (A.7)
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where I is the 8 × 8 identity matrix and

L′ =



ω∗
4|0 0 0 0 0 4a∗ 0 0

0 ω∗
2|2 0 0 0 32

21a∗ 2a∗ 0

0 0 ω∗
2|2 0 0 − 10

21a∗ 0 2a∗

0 0 0 ω∗
0|4 0 − 150

245a∗ 0 − 12
7 a∗

0 0 0 0 ω∗
0|4

24
245a∗ 12

7 a∗ 12
7 a∗

7
15a∗ 2

7a∗ 9
7a∗ − 7

3a∗ − 1
3a∗ ω∗

2|2 0 0

0 15
49a∗ − 6

49a∗ − 5
2a∗ − 5

14a∗ 0 ω∗
0|4 0

0 − 6
49a∗ 15

49a∗ 2a∗ 1
7a∗ 0 0 ω∗

0|4


, (A.8)

with [15]

ω∗
4|0 = (1 + α)2(5 + 6α − 3α2)

48
, (A.9)

ω∗
2|2 = (1 + α)2(34 + 21α − 6α2)

168
, (A.10)

ω∗
0|4 = (1 + α)2(150 + 21α − 3α2)

378
. (A.11)

The column matrix C is

C =



C1

C2

C3

C4

C5

C6

C7

C8


, (A.12)

where

C1 = 9

4
λ∗

1 − λ∗
2

(
6M∗

0|yy
2 + 2M∗

0|xy
2)

, (A.13)

C2 = 3

2
λ∗

3M
∗
0|xx − 1

3
λ∗

4

(
6M∗

0|yy
2 + M∗

0|xy
2)

, (A.14)

C3 = 3

2
λ∗

3M
∗
0|yy − 1

3
λ∗

4

(
M∗

0|xy
2 − 3M∗

0|yy
2)

, (A.15)

C4 = 1

35
λ∗

5

(
81M∗

0|yy
2 − 48M∗

0|xy
2)

, (A.16)

C5 = 1

35
λ∗

5

(
81M∗

0|yy
2 + 12M∗

0|xy
2)

, (A.17)

C6 = 3

2
λ∗

3M
∗
0|xy + λ∗

4M0|xyM
∗
0|yy, (A.18)
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C7 = −36

7
λ∗

5M
∗
0|xyM

∗
0|yy, (A.19)

C8 = 27

7
λ∗

5M
∗
0|xyM

∗
0|yy. (A.20)

In equations (A.13)–(A.20), I have introduced the second-degree moments

M∗
0|ij = 1

2 (P ∗
ij − δij ), (A.21)

where P ∗
ij is given by equations (2.22), (2.23) and the quantities

λ∗
1 = 5

144
(1 + α)2(11 − 6α + 3α2), (A.22)

λ∗
2 = (1 + α)2(1 + 6α − 3α2)

24
, (A.23)

λ∗
3 = (1 + α)2(22 − 21α + 6α2)

72
, (A.24)

λ∗
4 = (1 + α)2(21α − 1 − 6α2)

84
, (A.25)

λ∗
5 = (1 + α)2(39 − 21α + 3α2)

378
. (A.26)

The explicit dependence of the fourth-degree moments (A.1) on a∗ and α can be determined
from equation (A.5). These expressions are very long and not very illuminating so that they
will be omitted here for the sake of clarity.

The knowledge of the fourth-degree moments of the reference USF state is needed to
compute the thermal conductivity tensor κij and the tensor µij (see for instance,
equations (4.24) and (4.25)). The relationship between the (canonical) moments defined
in (A.1) and the moments N∗

ijk� defined by equations (4.18) and (4.23) is given by

N∗
xxxx = 1

5M∗
4|0 + 6

7M∗
2|xx + 4

3 (M∗
0|yyyy + M∗

0|zzzz), (A.27)

N∗
yyyy = 1

5M∗
4|0 + 6

7M∗
2|yy + M∗

0|yyyy, (A.28)

N∗
xxyy = 1

15M∗
4|0 + 1

7 (M∗
2|xx + M∗

2|yy) − 7
6M∗

0|yyyy − 1
6M∗

0|zzzz, (A.29)

N∗
xxzz = 1

15M∗
4|0 − 1

7M∗
2|yy − 1

6M∗
0|yyyy − 7

6M∗
0|zzzz, (A.30)

N∗
yyzz = 1

15M∗
4|0 − 1

7M∗
2|xx + 1

6M∗
0|yyyy + 1

6M∗
0|zzzz, (A.31)

N∗
xxxy = 3

7M∗
2|xy + M∗

0|xxxy, (A.32)

N∗
xyyy = 3

7M∗
2|xy + M∗

0|xyyy, (A.33)

N∗
xyzz = 1

7M∗
2|xy − (M∗

0|xxxy + M∗
0|xyyy). (A.34)

Appendix B. Chapman–Enskog-like expansion

In this Appendix, some technical details of the Chapman–Enskog-like type of expansion used
in the main text are described. First, the action of the operators ∂

(k)
t on the hydrodynamic
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fields can be obtained from the corresponding balance equations associated with the Boltzmann
equation (3.2). They are given by

∂tn + u0 · ∇n = −∇ · (nδu), (B.1)

∂t δu + a · δu + (u0 + δu) · ∇δu = −(mn)−1∇ · P, (B.2)

d

2
n∂tT +

d

2
n(u0 + δu) · ∇T + aPxy + ∇ · q + P : ∇δu = −d

2
pζ, (B.3)

where the pressure tensor P, the heat flux q and the cooling rate ζ are defined by
equations (2.11)–(2.13), respectively, with the replacement V → c. From equations (B.1)–
(B.3), it is easy to see that the action of the operator ∂

(0)
t is given by equations (3.9) and (3.10),

while in the case of the operator ∂
(1)
t the result is

∂
(1)
t n + u0 · ∇n = −∇ · (nδu), (B.4)

∂
(1)
t δu + (u0 + δu) · ∇δu = − 1

mn
∇ · P(0), (B.5)

d

2
n∂

(1)
t T +

d

2
n(u0 + δu) · ∇T = −aP (1)

xy − P(0) : ∇δu, (B.6)

where

P
(1)
ij =

∫
dc mcicjf

(1)(c). (B.7)

Substituting expansions (3.5) and (3.6) into equation (3.2), one obtains the kinetic equation
for the velocity distribution f (1)(

∂
(0)
t − aVy

∂

∂Vx

+ L
)

f (1) = −[
∂

(1)
t + (V + u0) · ∇]

f (0), (B.8)

where L is the linearized Boltzmann collision operator around the USF defined by
equation (3.28). Substituting equations (B.4)–(B.6) into equation (B.8) yields(

∂
(0)
t − aVy

∂

∂Vx

+ L
)

f (1) = Yn · ∇n + YT · ∇T + Yu : ∇δu, (B.9)

where

Yn,i = −∂f (0)

∂n
ci +

1

ρ

∂f (0)

∂δuj

∂P
(0)
ij

∂n
, (B.10)

YT,i = −∂f (0)

∂T
ci +

1

ρ

∂f (0)

∂δuj

∂P
(0)
ij

∂T
, (B.11)

Yu,ij = n
∂f (0)

∂n
δij − ∂f (0)

∂δui

cj +
2

dn

∂f (0)

∂T

(
P

(0)
ij − aηxyij

)
. (B.12)

Equations (B.9)–(B.12) are similar to those obtained for IHS [12], except that ζ (1) = 0 for
IMM. The solution to equation (B.9) is of the form given by equation (3.24). To obtain the
corresponding integral equations verifying the unknowns Xn,i, XT,i and Xu,ij , one has to take
into account the action of the time derivative ∂

(0)
t on the temperature and density gradients,

∂
(0)
t ∇iT = ∇i∂

(0)
t T

=
(

2a

dn2
(1 − n∂n)P

(0)
xy − ζT

n

)
∇in −

(
2a

dn
∂T P (0)

xy + (q + 1)ζ

)
∇iT , (B.13)
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∂
(0)
t ∇iδuj = ∇i∂

(0)
t δuj = −ajk∇iδuk. (B.14)

Substituting the expression of f (1) given by (3.24) into (B.8), the integral equations for
Xn,i, XT,i and Xu,ij are identified as the coefficients of the independent gradients. This leads
to equations (3.25)–(3.27).

Appendix C. Transport coefficients

In this Appendix, some of the reduced transport coefficients η∗
ijk�, κ

∗
ij and µ∗

ij are explicitly
computed. Let us consider first the coefficients of the form η∗

ijxy for model A. According to
equations (4.8), these coefficients verify the equations(

4a∗

d
P ∗

xy − ω∗
0|2

)
η∗

xyxy − a∗η∗
yyxy = 2

d
P ∗2

xy − P ∗
yy, (C.1)(

2a∗

d
P ∗

xy − ω∗
0|2

)
η∗

yyxy +
2a∗

d
P ∗

yyη
∗
xyxy = 2

d
P ∗

xyP
∗
yy, (C.2)

where the expressions of the reduced elements P ∗
ij are given by equations (2.22) and (2.23).

Since η∗
yyxy = η∗

zzxy and η∗
ijk� is a traceless tensor, then η∗

xxxy = −(d − 1)η∗
yyxy . The solution

to the set of equations (C.1) and (C.2) leads to equations (4.9) and (4.11) when one takes
into account relations (2.25) and (2.26). For small shear rates (a∗ 	 1), the coefficients η∗

ijxy

behave as

η∗
xyxy ≈ 1

ω∗
02

(
1 − 12

d
ã2

)
, η∗

jjxy ≈ 4

ω∗
02

1 − δjxd

d
ã. (C.3)

For model B, one can estimate η∗
ijxy by using approximation (4.12). Neglecting nonlinear

terms in q, it is easy to see that the quantities �η∗
ijxy are determined from the set of coupled

equations(
4a∗

d
P ∗

xy,A − ω∗
0|2

)
�η∗

xyxy − a∗�η∗
yyxy = 4

d
(�P ∗

xyP
∗
xy,A − a∗η∗

xyxy,A�P ∗
xy) − �P ∗

yy

+
2

d
(a∗P ∗

xy,A + ζ ∗)(1 + a∗∂a∗)η∗
xyxy,A − 2

d
(P ∗

xy,A − a∗η∗
xyxy,A)a∗∂a∗P ∗

xy,A,

(C.4)(
2a∗

d
P ∗

xy,A − ω∗
0|2

)
�η∗

yyxy +
2a∗

d
P ∗

yy,A�η∗
xyxy = 2

d
�P ∗

yy(P
∗
xy,A − a∗η∗

xyxy,A)

+
2

d
�P ∗

xy(P
∗
yy,A − a∗η∗

yyxy,A) +
2

d
(a∗P ∗

xy,A + ζ ∗)(1 + a∗∂a∗)η∗
yyxy,A

− 2

d
(P ∗

xy,A − a∗η∗
xyxy,A)a∗∂a∗P ∗

yy,A, (C.5)

where the elements �P ∗
ij are given by equations (3.17) and (3.18) and the viscosities η∗

xyxy,A

and η∗
yyxy,A for Model A are given by equations (4.9) and (4.11), respectively. The solution to

equations (C.4) and (C.5), along with the constraint �η∗
xxxy = −(d − 1)�η∗

yyxy , provides the
explicit form for the terms �η∗

jjxy . Their nonzero elements can be written as

�η∗
xyxy = 2�xy

dω∗2
0|2(1 + 2γ )2(1 + 6γ )4

, (C.6)
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�η∗
xxxy = − 2̃a(1 − d)�yy

d2ω∗2
0|2(1 + 2γ )3(1 + 6γ )4

, (C.7)

�η∗
yyxy = �η∗

zzxy = − 2̃a�yy

d2ω∗2
0|2(1 + 2γ )3(1 + 6γ )4

, (C.8)

where

�xy = 72dω∗
0|2γ

4 − 12γ 3[9dω∗
0|2 + 2(5 + 2d)ζ ∗] + 2γ 2[2(13 − 2d)ζ ∗ − 17dω∗

0|2]

+ γ [3dω∗
0|2 + 2(11 + 4d)ζ ∗] − ζ ∗, (C.9)

�yy = 144dω∗
0|2γ

3 − 12γ 2[2dω∗
0|2 + (14 + 5d)ζ ∗] − 4γ [6dω∗

0|2 + (4 + 7d)ζ ∗]

+ (d + 10)ζ ∗. (C.10)

For small shear rates, the coefficients η∗
ijxy have the expansions

η∗
xyxy ≈ 1

ω∗
02

(
1 − 2q

ζ ∗

dω∗
02

)
+

ã2

dω∗
02

[
2q

2(25 + 4d)ζ ∗ + 3dω∗
02

dω∗
02

− 12

]
, (C.11)

η∗
jjxy ≈ 4

dω∗
02

(1 − δjxd)

(
1 − qζ ∗ d + 10

2dω∗
02

)
ã. (C.12)

The evaluation of the coefficients κ∗
ij and µ∗

ij is more intricate than that of η∗
ijk� since it

involves the fourth-degree moments of the zeroth-order distribution. Here, only the coefficients
κ∗

yy and κ∗
xy for Model A in the case of a three-dimensional system (d = 3) will be considered.

These coefficients are given by

κ∗
xy = κ∗

xxxy + κ∗
yyxy + κ∗

zzxy, (C.13)

κ∗
yy = κ∗

xxyy + κ∗
yyyy + κ∗

zzyy . (C.14)

In the case of Model A (q = 0), the coefficients κ∗
ijk� obey the set of coupled equations[

2

(
2

3
a∗P ∗

xy + ζ ∗
)

− ν∗
0|3

]
κ∗

ijk� − ν∗
2|1 − ν∗

0|3
5

(δjkκ
∗
i� + δikκ

∗
j� + δij κ

∗
k�)

− a∗(δixκ
∗
jky� + δjxκ

∗
iky� + δkxκ

∗
ijy�)

= − 2

15
(8N∗

ijk� − P ∗
kjP

∗
i� − P ∗

ikP
∗
j� − P ∗

ijP
∗
k�). (C.15)

Equation (C.15) shows that κ∗
yy and κ∗

xy are coupled, so that their calculation involves the set
of coefficients

{κ∗
xxyy, κ

∗
yyyy, κ

∗
zzyy, κ

∗
xyyy, κ

∗
xxxy, κ

∗
yyxy, κ

∗
zzxy}. (C.16)

By using matrix notation, the set of seven coupled algebraic equations for the unknowns (C.16)
can be written as

Pσσ ′Qσ ′ = Rσ , σ = 1, . . . , 7. (C.17)
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Here, Q is the column matrix defined by the set (C.16), P is the square matrix given by

P =



β + φ φ φ −2a∗ 0 0 0

3φ β + 3φ 3φ 0 0 0 0

φ φ β + φ 0 0 0 0

0 −a∗ 0 β φ φ φ

−3a∗ 0 0 0 β + 3φ 3φ 3φ

0 −a∗ 0 0 φ β + φ φ

0 0 −a∗ 0 φ φ β + φ


, (C.18)

where

β ≡ 2

(
2

3
a∗P ∗

xy + ζ ∗
)

− ν∗
0|3 = −1 + α

12
[12γ (1 + α) + 7α + 2] , (C.19)

φ ≡ ν∗
0|3 − ν∗

2|1
5

= 1

24
(1 + α)2. (C.20)

The column matrix R is

R = − 2

15



8N∗
xxyy − 2P ∗2

xy − P ∗
xxP

∗
yy

8N∗
yyyy − 3P ∗2

yy

8N∗
yyzz − P ∗2

zz

8N∗
xyyy − 3P ∗

yyP
∗
xy

8N∗
xxxy − 3P ∗

xxP
∗
xy

8N∗
xyyy − 3P ∗

yyP
∗
xy

8N∗
xyzz − P ∗

zzP
∗
xy


, (C.21)

The solution to equation (C.17) is

Qσ = (P−1)σσ ′Rσ ′ . (C.22)

This relation provides an explicit expression for the coefficients of the form κ∗
ijyy and κ∗

ijxy .
From these expressions one can obtain the elements κ∗

xy and κ∗
yy . They can be written as

κ∗
xy = �xy

�
, κ∗

yy = �yy

�
, (C.23)

where

�xy = a∗β(3β + 8φ)R1 +
a∗

β
R2[2a∗2(3β + 2φ) + β2(β − 2φ)]

+
a∗

β
R3[β2(β − 2φ) − 12a∗2φ]

+ 2R4a
∗2(3β + 8φ) + (R5 + R6 + R7)[β

2(β + 5φ) + 6a∗2φ], (C.24)

�yy = β2(β + 5φ)R1 + R2[2a∗2(β + 7φ) + β2(β + 5φ)] + R3[β2(β + 5φ) + 4a∗2φ]

+ 2R4a
∗β(β + 5φ) − 2(R5 + R6 + R7)a

∗βφ, (C.25)

� = 2a∗2φ(6β + 23φ) + β2(β2 + 10βφ + 25φ2). (C.26)
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In the limit of small shear rates (a∗ → 0), the coefficients κ∗
xy and κ∗

yy behave as

κ∗
xy ≈ κ(1)

xy (α)a∗ + O(a∗3), κ∗
yy ≈ κ(0)

yy (α) + O(a∗2), (C.27)

where

κ(1)
xy (α) = 112

5

162α7 − 585α6 +981α5 − 111136α4 + 7272α3 + 31267α2 − 49855α − 9466

(1 − 9α)2(1 + α)3[3α(α − 2) − 5][3α(2α − 7) − 34]
,

(C.28)

κ(0)
yy (α) = − 16

1 + α

17 + 9α(α − 2)

(9α − 1) [3α(α − 2) − 5]
. (C.29)

The coefficient κ(1)
xy (α) is a Burnett coefficient while κ(0)

yy (α) gives the Navier–Stokes thermal
conductivity coefficient for a three-dimensional inelastic gas, equation (4.26). When α = 1,
one recovers well-known results [4] for elastic collisions, namely, κ(0)

yy = 1 and κ(1)
xy = − 7

2 .
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Montanero J M and Garzó V 2003 Phys. Rev. E 67 021308
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[7] Garzó V and Santos A 2003 Kinetic Theory of Gases in Shear Flows. Nonlinear Transport (Dordrecht: Kluwer

Academic)
[8] Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows (Oxford:

Clarendon)
[9] Brey J J, Dufty J W and Santos A 1999 J. Stat. Phys. 97 281
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[23] Santos A, Garzó V and Dufty J W 2004 Phys. Rev. E 69 061303
[24] Lees A W and Edwards S F 1973 J. Phys. C: Solid State Phys. 5 1921
[25] Dufty J W, Santos A, Brey J J and Rodrı́guez R F 1986 Phys. Rev. A 33 459
[26] Ikenberry E and Truesdell C 1956 J. Ration. Mech. Anal. 5 1

Truesdell C 1956 J. Ration. Mech. Anal. 5 55
[27] Brey J J, Ruiz-Montero M J and Moreno F 1997 Phys. Rev. E 55 2846
[28] Santos A and Astillero A 2005 Phys. Rev. E 72 031308

Astillero A and Santos A 2005 Phys. Rev. E 72 031309
[29] Lee M and Dufty J W 1997 Phys. Rev. E 56 1733
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